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Abstract-Analytical transmission electron microscope (TEM) observations reveal that ilmenite grains sam-

pled from the sub-10 ktm size fraction of Apollo 11 (10084) and Apollo 16 (61221, 67701) soils have rims

10-300 nm thick that are chemically and microstructurally distinct from the host ilmenite. The rims have a

thin outer sublayer 10-50 nm thick that contains the ilmenite-incompatible elements Si, A1, Ca and S. This

overlies a relatively thicker (50-250 nm) inner sublayer of nanocrystalline Ti-oxide precipitates in a matrix

of single-crystal ilmenite that is structurally continuous with the underlying host grain. Microstructural in-

formation, as well as data from x-ray spectrometry (EDS) and electron energy loss spectrometry (EELS)

analysis of the inner sublayer, suggest that both the inner and outer sublayer assemblages are reduced and

that the inner layer is depleted in Fe relative to the underlying ilmenite. The chemistry of the outer sublayer

suggests that it is a surface deposit of sputtered or impact-vaporized components from the bulk lunar soil.

The inner sublayer is part of the original host grain that has been physically and chemically processed, but

not amorphized, by solar ion irradiation and possibly some subsolidus heating. The fact that the deposited

outer sublayer is consistently much thinner than the radiation-altered inner sublayer indicates that only a minor

fraction of the total rim volume is a product of vapor or sputter deposition. This finding is in contrast to

recent descriptions of thick deposited layers on one-third of regolith silicate grains and indicates that ilmenite

and silicate rims as a group are different in the fraction of deposited material that they contain.

INTRODUCTION

Past and present efforts to understand regolith evolution on the

Moon have focused considerable attention on the record of thermal,

chemical and radiation processes recorded in the outer surface layers

of regolith grains. A precise reading of this record has been an ever-

present goal in lunar regolith studies, and efforts in this area have

increased recently because of some new approaches and the increas-

ing appreciation for the close link between the characteristics of

grain surfaces and regolith optical reflectance properties (Pieters et

al., 1993; Hapke, 1993).

Early electron microscope and surface analysis studies of lunar

soil grains appeared to confirm pre-Apollo predictions (Zeller et al.,

1966; Zeller and Ronca, 1967) that radiation effects from solar ions

should play an important role in modifying the chemistry and struc-

ture of the outer surface layers of regolith grains. Early transmission

electron microscope (TEM) observations revealed that regolith

silicates have amorphous surface layers with thicknesses and micro-

structures similar to those found in experimentally irradiated analog

materials (Dran et al., 1970; Bibring et al., 1972, 1974, 1975; Borg

et al., 1980, 1983). The chemical composition of the surface of na-

tural regolith grains as determined by Auger, x-ray photoelectron,

and secondary-ion spectroscopies was also seen as generally consis-

tent with solar radiation effects (Yin et al., 1975a, b, 1976; Housley

and Grant, 1975, 1976; Gold et al., 1975; Zinner et al., 1976).

In recent years, the ability to perform submicron scale chemical

microanalyses in the TEM, and the application of ultramicrotomy

techniques to small lunar regolith grains, has represented a signifi-

cant analytical advance relative to early TEM work. These techniques

have shown now that a significant subset of the amorphous rims on

lunar grains have very different chemical compositions from their

underlying host minerals (Keller and McKay, 1993, 1994, 1995).

The results suggest that deposition .of ion-sputtered or impact-

vaporized components on grain surfaces may play as large a role in

forming some grain rims as radiation damage, and that an appre-

ciable subset of regolith grains have rims that are largely deposited.

These findings do not exclude solar ion radiation as an agent of rim

formation but have been a source of debate on how much the sur-

face alteration of specific regolith components is the result of solar

ion radiation, vapor deposition or a combination of the two processes

(Hapke et aL, 1994). To date, research on this problem has natural-

ly focused on the surface features and rim materials on regolith

silicates, but an important nonsilicate in the regolith that has been a

candidate for further study is ilmenite (FeTiO3; Christoffersen et aL,

1994; Bernatowicz et al., 1994a). Early experimental irradiation
studies and limited TEM observations of ilmenite in lunar soils

suggested that ilmenite should be less subject to solar wind radiation

damage relative to silicates (Dran et al., 1970; Bibring et al., 1972,

1974, 1975; Borg et aL, 1980, 1983), but this has not been con-

firmed by an adequate base of TEM observations of ilmenite from

natural lunar soil.

In an effort to expand our ongoing observational TEM work on

lunar soils, we have carried out an analytical TEM study of ilmenite

grains extracted from the sub-10 #m size fractions of mare soil

10084 and highland soils 67701 and 61221. The ilmenite grains

have been prepared by ultramicrotomy techniques that have facili-

tated detailed characterization of the microstructure and major el-

ement chemical composition of their outer margins and interior

regions. We have found that most grains have continuous outer rims,

10 to 300 nm thick, that are composed of a thin surface layer of

deposited material and an underlying layer of radiation-altered il-

menite. Several features in this radiation-altered layer, in particular
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its retention of a crystalline as opposed to amorphous microstruc-

ture, are indeed fundamentally different from rim material in rego-

lith silicates.

SAMPLES AND METHODS

Ilmenite grains were separated from the sub-10/zm size fractions of

Apollo 11 mare soil 10084,853 and Apollo 16 highland soils 67701,17 and

61221,15. The 10084 soil is classified as mature (Is/FeO = 48) whereas
67701 and 61221 are classified as submature (Is/FeO = 49) and immature
(ls/FeO = 9.2), respectively (Morris, 1978). Separation was done under an
optical microscope using a micromanipulator. This method was successful
at locating and separating ilmenite even from soil 61221 in which the ilmenite

abundance is extremely low A total of seven grains were examined from
the 10084 soil, four from 67701 and two from 61221.

The grains were embedded two to seven at a time in an epoxy plug and

sectioned with a Sorvall Porter-Bium ultramicrotome This yielded multiple
100 nm thick sections that were transferred to continuous C film substrates

mounted on thin-bar 200 mesh Cu grids. Depending on the size and fra-
gility of the grains, the microtome sectioning can induce closely-spaced
fractures that result in disaggregation and "drop out" of the grain's center

portion However, the outer edge of most grains is usually preserved in situ
with surface features intact.

The samples were examined under both bright-field and dark-field
imaging conditions with JEOL 2000FX and JEOL 2010 transmission elec-

tron microscopes operating at 200 keV. High-resolution lattice fringe imag-
ing was attempted for some grains hut was limited in usefulness by the >50
nm thickness of most grain edges. For microanalysis, the 2000FX is fitted

with a LINK eXL thin-window energy-dispersive x-ray spectrometer (EDS).
The 2010 has a Noran TN 5500 thin-window EDS system, as well as a

GATAN model 666 parallel electron energy loss (EELS) spectrometer. The
EDS analyses were acquired using tbcused probes 20-60 nm in diameter,

and calculations indicated that beam spreading within the 50-100 nm thick-
ness of the grain edges was on the order of 5-10 nm. The EDS peak fitting
and data reduction methods utilized a digital top-hat filter for background

subtraction and a least squares method with empirical peak profiles for peak
deconvolution and integration. Final element concentrations were calculated

using the Cliff-Lorimer method (Cliff and Lorimer, [975) based on empirical

200nm

K-factors that were determined using a variety of natural and synthetic
standards with a high degree of micron-scale homogeneity. Although both
EDS detectors have good light-element detection capabilities, attempts to

quantify O contents in the rims by EDS were largely unsuccessful due to

strong thickness-dependent absorption effects for O Kc_ x-rays within the
ilmenite.

Electron energy loss spectroscopy (EELS) was used primarily for the
purpose of investigating the local chemical environment and oxidation state

of Ti in the ilmenite using the fine structure associated with the Ti L 23

edge. Spectra were acquired in TEM image mode at 15,000X magnificatio'n
with a collection semi-angle of N100 milliradians at a dispersion of 0.1

eV/channel. The full width at half-maximum height of the raw (unprocessed)
zero-loss peak was -0.7 eV. The relative energy of features in the spectra
for the Ti L23 edges were calibrated relative to the C at* peak maximum,
which was se[ to 286 eV (Egerton, 1986).

RESULTS

Rim Microstructure

General Features-Of the 13 grains examined, all except one

(in soil 61221,15) have rims that are microstructurally as well as

chemically different from the grain interior. In bright-field images,

rims typically appear as a layer of mottled strain contrast that is

continuous around a grain's outer margin (Fig. 1). In detail, these

rims typically have a "nanostratigraphy" defined in most cases by

distinct inner and outer sublayers (henceforth called inner and outer

layers) that are in sharp contact (Fig. 2a, b,c,d). As plotted in Fig. 3,

inner layer thicknesses generally range from 50-150 nm, whereas

outer sublayers are relatively thinner (0-50nm) and may be wholly

absent (e.g., Fig. 2d), partially continuous or continuous around a

grain's margin. In soil 10084, two grains (nos. 2 and 7) had particu-

larly wide rims (total thickness = 200-300 nm), with outer layers

50-75 nm wide.

,Y /':
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FIG. 1. Transmission electron microscope image (bright-field) of the edge region of a 10 ffm diameter i[menite grain from lunar soil 67701.
Inset shows the entire grain section as prepared by ultramicrotomy with enlarged area indicated by arrow.
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FIG. 2. Transmission electron microscope images (bright-field) of rim material on ultramicrotomed ilmenite grains from soils 67701 (a,c,d) and
10084 (b). Microstructurally distinct inner and outer layers (brackets) are present in (a), (b) and (c), but absent in (d). The inner layer in (a)
contains unidentified spherical precipitates (arrows). Platelet precipitates of Ti-oxide in (c) show crystallographic alignment on (001) of the host
ilmenite (inset). Arrows in (b), (c) and (d) indicate surface-correlated Fe metal grains.
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FIG. 3. Plot of individual thickness measurements of inner and outer layers on ilmenite
grain rims. Grouped bars show data for individual grains. Total bar height is the sum of
inner layer (open bar) and outer layer (solid bar) thicknesses. Data uncorrected for
apparent thickness effects due to rim inclination (see Appendix 1).

The overall variation in rim widths, both within the same grain

and between different grains, is as much as 50% (see Fig. 3). While

some of this variation may be real, some of it may be due to various

degrees of apparent widening of rims inclined to the section plane,

or to tilt-dependent diffraction contrast effects at the rim-grain inter-

face. We estimate that simple geometrical widening of rims can be

as much as 25-30% of the true rim thickness, although a more typi-

cal value is probably closer to 15-20% (see Appendix 1).

Inner Layer-The microstructure of the inner layer is charac-

terized by dense strain contrast and the presence of precipitates

whose two-dimensional shapes are either elongate (Fig. 2c) or round

(Fig. 2a). The elongate precipitates generally predominate in pro-

portion relative to the round ones, and the inner layers on some rims

consist entirely of precipitates of the elongate type embedded in an

ilmenite matrix (e.g., Fig. 2c). Both types of precipitates decrease

progressively in density towards the grain interior and generally only

become individually resolvable 70-100 nm from the grain edge (e.g.,

Fig. 2c). In these cases, tilting experiments were able to show that

the elongate precipitates have a platelet-like morphology in three di-

mensions, with the planar dimension aligned with the basal (001)

plane of the ilmenite (Fig. 2c, inset). The round precipitates were

shown to be spherical or ovoid in most cases, although some were

found to be small platelet precipitates that only appeared round be-

cause of the shape of their associated strain contrast.

The crystallographic alignment of the platelet precipitates as

well as their overall geometry is similar to that of larger precipitates

of rutile (TiO2) described in terrestrial ilmenites (Haggerty, 1976).

On this basis, as well as the chemical data discussed below, we be-

lieve the platy precipitates are most likely Ti-oxide, either TiO 2 or a

member of the reduced Ti-oxide series of Magn61i phases (TixO2x_ D.

The crystallographically controlled orientation of the precipitates

appears to be a topotactic relationship defined by alignment of the

hexagonal close-packed O layers in the Ti-oxide and ilmenite crys-
tal structures.

The spherical precipitates in the inner layer (Fig. 2a) were too

small to identify directly based on EDS analyses or conventional

imaging. In four of the grains we studied, one in soil 67701 and

three in the 10084 soil, wefound clearly defined latent tracks from

solar heavy ions occurring as continuous lines decorated with linear

trails of 3-5 nm diameter spherical precipitates. The detailed charac-

teristics of these tracks will be described in a separate

paper. The association of spherical precipitates with tracks

in some grains leads us to suspect that the other, non-

aligned, spherical precipitates in track-free rims may be

artifacts of heavy ions that left discontinuous damage trails
or whose latent tracks have since been annealed out.

The closely-spaced distribution of the Ti-oxide plate-

lets, as well as the coherency strain contrast around them,

is the probable cause of the complex, dense strain contrast

that characterizes the inner layer. Despite this dense strain

contrast and the presence of the precipitates, all rims

exhibited single-crystal diffraction patterns with the same

orientation as those obtained from the host ilmenite (Fig.

4). Diffuse scattering, which would indicate the presence

of significant amorphous material in the rim, was not present

in any diffraction patterns. Reflections from the precipi-

tates themselves were also not observed, possibly because

of grain thickness effects.

We did find, however, that the superstructure reflec-

tions of the class hkl, l = 2n + 1 that are normally present

in ilmenite due to Fe-Ti ordering are present in patterns of

the grain interior (Fig. 4a) but are absent or very weak in diffraction

patterns of the rim (Fig. 4b). This may result from true meta-stable
Fe-Ti disorder in the ilmenite in the rim or could indicate that the

Ti-oxide precipitates embedded in the inner layer are Ti203, which
is a reduced Ti-oxide that is isostructural with ilmenite but which

lacks ilmenite's superlattice reflections because its structure contains

only one type of cation. However, the splitting of main re-flections

along the 00l systematic row that would be expected if diffraction

patterns contained 00l reflections from both Ti203 and ilmenite is

not observed, and we therefore prefer to attribute the weak or

missing superstructure reflections to Fe-Ti disorder.

Outer Layer-The outer layer consists of varying concentrations

of rounded to elongate grains 5-20 nm in diameter embedded in a

finer-grained matrix (Fig. 2a, b,c). In locations where these rounded

grains protrude above the surface of the grain rim (e.g., Fig. 2b,c),

they were identified as Fe metal based on EDS analyses. The matrix

that encloses the grains is too limited in extent and/or too fine grained

to characterize by diffraction or EDS techniques. Its general imaging

characteristics suggest that it is amorphous or possibly nanocrys-

talline. We note that Fe metal grains are not limited in occurrence

to rims with distinct outer layers and can be found on the outer

surface of rims that consist only of inner layer material (Fig. 2d).

Rim Chemistry

The x-ray EDS microanalyses at sites along the rims were

obtained typically for 3 to 5 spot positions, starting at a rim's outer

edge and moving inward. Because in some cases the focused beam

diameter (typically 30 nm) was only slightly less than the rim width,

most "traverses" consisted of a first spot placed just within a rim's

outer edge, a second spot centered within the rim material, and a

third "core" analysis 2-5 ktm away from the rim. Analyses of wider

rims used 4 to 5 spots spaced approximately one beam-width apart.

Experiments on ilmenite grains with no altered rims showed that

element ratios for spots placed near or across grain edges did not differ

from those in grain interiors, indicating that selective absorption or

fluorescence phenomenon tied to edge effects were not significant.

All of the ilmenite grains analyzed had core regions containing

0.75-2.0 wt% Mg substituting for Fe in otherwise stoichiometric

ilmenite with an atomic ratio (Fe + Mg)/Ti _ 1. No other minor

elements were detected. By contrast, EDS spectra acquired with the
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FIG. 4. Transmission electron microscope image (bright-field) of ilmenite rim with selected-area aperture locations (a,b) of [100] zone axis
diffraction patterns (a,b). Reflections of the class hkl, l = 2n + 1 (e.g., 003) that result from Fe-Ti ordering along the ilmenite c-axis are present
with normal intensities in the pattern (a) from the unaltered ilmenite but are faint or absent in the pattern (b) from the rim material.
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FIG. 5. (a) Plot of the sum of the atomic fractions of Si + AI + Ca + S over total cations
for rims ("edge"; open square) and adjacent grain interiors ("core"; filled circle) in
individual ilmenite grains from soils 10084 and 67701. Vertical lines connect data from
individual traverses. (b) Same plot type as in (a) for the atomic fraction of Fe/(Fe + Mg
+ Yi).

beam placed just on or within the edge of most rims showed vari-

able minor concentrations of Si (0.5 to 6 wt%), A1 (0.5-1.3 wt%),

Ca (0.3 1.0 wt%), and S (0.3-0.90 wt%) in addition to Fe (20-30

wt%), Ti (30-38 wt%) and Mg (1-2 wt%). The Si, Al, Ca and S are

crystal-chemically incompatible with the ilmenite structure and have

never been reported in >0.1 wt% concentrations in any lunar il-

menites (Papike et al., 1991). The combined Si + AI + Ca + S con-

tents of grain rims are compared to corresponding core compositions

in Fig. 5a. In addition to finding the aforementioned "ilmenite-in-

compatible" elements in most rims, we also discovered that the

atomic ratio of Fe relative to the cation sum Fe + Mg + Ti (Fe/Fe +

Mg + Ti) in rims on 5 of the 8 grains analyzed was much lower than

expected for normal ilmenite, ranging between 0.30-0.41 for rims,

as compared to 0.45-0.475 for grain cores (Fig. 5b).

Precise correlation of the above chemical features with the

nanostratigraphy of the rims is complicated by the large size of our

analytical probe (3040 nm) relative to the width of the layers (see

Fig. 3). However, we did find that the elements Si + AI + Ca + S

consistently disappear from the EDS spectra when the beam is stepped

only slightly from a grain edge to an interior position within the

inner layer, thus supporting the interpretation that the incompatible

elements mostly reside in the outer layer. Although these

elements would appear to comprise 20 atomic percent at

most of the total cations in the outer layer (Fig. 5a), the

remainder being mostly Fe and Ti, the likely possibility of

analytical overlap between the outer and inner layers sug-

gests that this may be an underestimate. In the one case,

where we analyzed a relatively wide (50 nm) outer layer

with a small probe (20 nm), the fraction of Si + AI + Ca +

S relative to total cations was closer to 42%. (A value about

the same as that obtained if all elements except S are con-

verted to oxides.) Our analytical traverse on this particular

rim also showed an Fe/(Fe + Ti + Mg) ratio at the outer edge

of 0.30, followed by a decrease to 0.10 at the next beam

step, with values increasing thereafter to a final core value

of 0.48. This suggests that the outer layer in this particular

case is actually Fe-enriched relative to the inner layer. Such
a rim-to-core reversal in Fe content was not observed in

analyses of thinner rims, but the outer layers on these rims

may have been simply too narrow for their compositions to
be resolved.

The problem of analytical overlap between the inner

and outer layers also impacts the question of whether the

rims' overall lower Fe/(Fe + Mg + Ti) ratio relative to stoi-

chiometric ilmenite is due to true Fe-depletion (or alter-

natively Ti-enrichment) in the inner layer as opposed to

analytical "mixing" between, for example, an outer layer

with Fe/(Fe + Mg + Ti) <<0.5 and an inner layer with nor-

mal ilmenite stoichiometry. Two observations suggest that

the inner layer is truly Fe-depleted. The first is the pres-

ence of low values of Fe/(Fe+Mg+Ti) in rims whose images

show an inner layer but little or no visible outer layer. The

second is the overall poor correlation, as shown by the plot

in Fig. 6, between the concentration of Si + AI + Ca + S

and the Fe/(Fe + Mg + Ti) ratio in our rim analyses. Both

suggest that the composition of the inner layer contributes

significantly to lowering the Fe/(Fe + Mg + Ti) ratio ob-

served for most rims, and that the inner layer is truly Fe-

depleted (or Ti-enriched) relative to stoichiometric ilmenite.
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FIG. 6. Plot of atomic fraction of Fe relative to Fe + Mg + Ti vs. the atomic
fraction ofSi + AI + Ca + S relative to total cations for all rim analyses.



Microstructure,chemistryandoriginofgrainrimsonilmenitefromthelunarsoilfinestfraction 841

InadditiontoEDSmicroanalyses,EELSspectraoftheTiL2,3
edgepeakswereobtainedfromtherimsandunalteredcoresofgrains
fromthe10084soil(Kelleret al., 1995). The essential structure of

these peaks reflects promotion of inner shell (2p) electrons to

valence and conduction bands (3d states), with the Ti L2 and L 3

peaks being split into doublets because of crystal field effects (Fig.

7). The resulting four peaks can change in relative intensity or may

be split even further by distortions in the symmetry of the octahe-

dral ligand (anion) geometry around the Ti. The fine structure and

energy position of the edge onset are different distinctly for tetra-

vs. tri-valent Ti, thus providing a way to probe the relative amounts

of Ti 4+ and Ti 3+ in the analyzed region (Keller et al., 1995).

In all grains analyzed, the Ti L2, 3 spectra showed significant
differences in structure between the grain rims and cores. Figure 7

shows typical rim and core spectra, with comparison spectra from

reduced synthetic Ti-oxides containing Ti 3+. Relative to grain cores,

the Ti L2, 3 peaks for the altered rims show an -0.5 eV shift toward

lower energy, as well as decreased splitting of the L3 and L 2 peaks.

Compared to the ilmenite rim spectra, the reduced Ti-oxides Ti407

(50 cation% Ti 3+) and Ti203 (100% Ti 3+) show proportionately

larger energy shifts and progressively less splitting. Both in shape

and energy, the rim spectra fall between the ilmenite core and the

Ti407 spectra, which is consistent with N20% of the Ti in the rim

being Ti 3+. Because all of the rims analyzed by EELS had outer

layers that were very thin or nonexistent, we infer that the bulk of the

signal from this Ti 3+ originates in the inner layer, where the platy

Ti-oxide precipitates are its probable host phase. Therefore, some

or all of these precipitates are likely to be mixed-valence Ti-oxides,

possibly members of the TixO2x_ 1 nonstoichiometric series of Mag-

n61i phases.

Titanium

L2,3 edges

Ilmenite

u)
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.=
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Ilmenite

Ti407

Ti203

450 460 470 480

Energy Loss (eV)

FIG. 7. Electron energy-loss spectra for the Ti L23 edge for a typical
ilmenite core/rim pair, compared to spectra for the reduced Ti-oxides Ti407

(50% Ti 3+) and Ti203 (100% Ti3+). The spectra are shifted vertically for
clarity.

Summary and Interpretation of Observations

Figure 8 diagrams our interpreted observations of the chemistry

and microstructure of the ilmenite rims. The line drawing shows a

rim with a typical overall thickness of-80 nm, with microstruc-

turally distinct inner and outer layers. In our view, the inner layer

most likely represents original ilmenite that was transformed into a

multiphase assemblage either as a result of, or in parallel with,

chemical alteration of the original grain's outer surface. The trans-

formation involved nucleation and growth within the ilmenite of

crystallographically-oriented precipitates of reduced Ti-oxide (TiO2_x)

together with spherical grains of a second unidentified phase Sp

(Fig. 8). The spatial association of the Sp precipitates with heavy

ion tracks suggests that these may be latent defects that were pro-

duced as part of the track formation process. Alternatively, given

the reduced nature of the inner layer assemblage, the Sp grains may

be small grains of Fe metal (see below).
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FIG. 8. Diagram and schematic chemical plots summarizing the microstruc-
ture and chemistry of the ilmenite rims. The line diagram (top) shows the
outer layer assemblage to be composed of unidentified matrix (Bin×) and
grains of metallic Fe (Fe°). The inner layer consists of precipitates of

reduced Ti-oxide (TiO__x) and unidentified spherical precipitates (Sp)
enclosed in an ilmenite (FeTiO3) host. The major element chemical plot
(middle) shows Fe depletion relative to stoichiometric ilmenite in the inner
layer that either reverses on going into the outer layer (dashed line) or stays
constant (solid line). Enrichment of the outer layer in Si and other elements
is represented also. The bottom chemical plot summarizes the possible
variations in Fe and Ti redox states occurring in the inner layer.
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As shown in the accompanying schematic chemical plots (Fig.

8), the inner layers on some rims have a lower atomic fraction of Fe

relative to normal ilmenite, a chemical difference that we explain

below as due to Fe loss rather than Ti addition. The inner layer

assemblage is consistent also with loss of O from the original

ilmenite, with associated reduction of both Fe and Ti. The reduced

Ti is hosted within the TiO2_ x precipitates. For the reduced Fe

(Fe°), the schematic chemical plot of the Fe 2+ concentration in Fig.

8 shows two possibilities: (1) if the spherical precipitates (Sp) are
not Fe metal (Sp ;e Fe0), then essentially all of the reduced Fe has

been transported out of the inner layer, thereby accounting for the

observed Fe loss; or (2) if the Sp are small Fe metal grains (Sp -
Fe°), the inner layer retains at least some reduced Fe, with the re-

mainder being removed. In either case, our TEM images suggest

that the inner rim lacks enough precipitates that are potentially Fe

metal to balance the observed amount of TiO2_ x. This supports the

idea that the Fe was transported out of the layer, possibly in the

form of metallic Fe produced in a reaction such as:

FeTiO 3 = Fe ° + TiO2_ x + (1 + x) 1/2 02 Eq. (1)

We interpret the outer layer to be composed of an amorphous or

nanocrystalline matrix (Bmx) with embedded grains of Fe-metal

(Bmx + Fe°; Fig. 8). This matrix is the most likely host for the

ilmenite-incompatible elements Si, A1, Ca, S and possibly some Ti.

Note that the Fe concentration plot for the outer layer in Fig. 8 has

been drawn to reflect the fact that, as we have noted above, some

ilmenite grains may show an increase in Fe content in moving from

the inner to the outer layer. As discussed below, we favor the inter-

pretation that the outer layer is mostly deposited material and this

reversal in Fe content may reflect the fact that this material is Fe-

enriched relative to the Fe-depleted ilmenite surface on which it was

deposited. Additionally, it is also possible that some of the Fe metal

in the outer layer was originally reduced to the metallic state in the

inner layer and thereafter migrated to the grain's outer surface by

diffusion or other transport mechanisms.

FORMATION OF THE OUTER RIM LAYER

The chemical and microstructural characteristics of the inner

and outer layers support the view that they formed by different

processes: the outer layer by accretion of condensable components

contributed to the local lunar atmosphere by impact events or solar

ion sputtering (Hapke et al., 1975; Keller and McKay, 1993; John-

son and Baragiola, 1991) and the inner layer by alteration of the

original ilmenite by thermal or radiation effects (see below). There-

fore, we will treat the origin of these two layers as somewhat sep-

arate problems, not ignoring the possibility that their formation may

have involved some mutual chemical and physical interaction.

Our analytical results support the view that the outer layer is the

host for the ilmenite-incompatible elemeni.s Si, Al, Ca and S. These

elements must be deposited components because they are not found

in the interior of the ilmenite, and their solubility in the ilmenite

crystal structure is very low in any case. Their possible mechanisms

of deposition include solar ion sputtering of the surrounding soil

followed by deposition of the sputter-derived vapor onto the ilmenite

(Hapke et al., 1975; Hapke, 1993), or condensation onto the il-

menite of vaporized soil components generated by micrometeorite

(or larger) impacts (Hapke et al., 1975; Hapke, 1993). Although

there are thought to be characteristic differences in how these two

processes selectively vaporize and then recondense components in

the lunar soil, there are as yet no clear chemical criteria for distin-

guishing deposits formed by the two processes. However, because

Si's abundance in vapor sputtered from silicates is inferred to be

low due to chemical binding considerations (Bradley et al., 1996),

the Si-rich nature of the deposited material on our ilmenite grains

could be taken as evidence that they come from impact rather than

sputter-derived vapors.

As outlined above, our best estimate is that N40% of the outer

layer consists of deposited Si, A1, Ca, and S, the remainder being

mostly Fe and Ti. The amount of these latter two elements that is

deposited is difficult to assess, since both could have migrated into

the outer layer from the Fe- and Ti-rich inner layer. Indeed, for Fe

at least, such transport is very consistent with our indications that

the inner layer represents original ilmenite that lost Fe as it became

progressively more altered. However, two observations raise the

possibility that not all of the Fe in the outer layer is indigenous.

First, the thickest outer layer we analyzed actually contained more

Fe than the inner layer below it, a compositional profile that would

not generally be expected if the Fe in the outer layer had been

acquired by diffusion-controlled exchange with the inner layer.

Second, Fe in the metallic form is a major component in rims of

unequivocal depositional origin on Fe-free silicates such as feldspar

and cristobalite (Keller and McKay, 1993, 1994, 1995), as well as

on almost all other rims Keller and McKay classify as deposited.

On this basis we would expect that, if ilmenite grains have de-

posited material as part of their rims, and they most obviously do, this

material should contain metallic Fe as a major component. Follow-

ing these arguments, and using our data on the rim with the "re-

versed" Fe profile as a guide, we consider that N50 to 60% of the Fe

in the outer rim may be deposited, raising in turn the total fraction

of deposited material in the outer rim from 40 to -50%.

We note that on all of the ilmenite grains examined in this study

the outer layer comprises at most 25% of the entire rim volume and

is closer typically to 5-10%. The total fraction of deposited material

in the rims is therefore on the order of only 2.5 to 5%, and conse-

quently all the rims can be classified as consisting mostly of altered

ilmenite. For rims on regolith silicates, Keller and McKay (1995)

have recently estimated that roughly one-third of silicate rims are

deposit-dominated (i.e., 80-90 atom% deposited components), one-

third are radiation-damage dominated, and one-third are intimate

mixtures of deposited material and radiation-damaged host grain.

This estimate is a revision, based on a more extensive data set, of

Keller and McKay's earlier work (Keller and McKay, 1993) in which

silicate rims were suggested to be mostly vapor deposits.

Bernatowicz et al. (1994a, b) have questioned Keller and McKay's

estimates of the proportion of deposit-dominated rims on the implicit

grounds that, on a silicate grain, the vapor deposits and radiation-

damaged host grain material are both amorphous and similar enough

in chemistry as to be indistinguishable. They further contend that

such estimates are only possible on an oxide like ilmenite, for which

microanalyses can easily discriminate the Si-free radiation-damaged

host grain, from Si-bearing vapor deposits. However, Keller and

McKay (1995) have shown that the amount of vapor deposit on a

silicate grain can be estimated reliably by: (1) quantitatively mea-

suring O along with cations in both rims and their corresponding

substrates and (2) mapping the distribution of nanocrystalline Fe

metals grains in the rims.

If we proceed under two assumptions, namely that Keller and

McKay's (1995) estimates of the proportion of deposited rims on

regolith silicates are reliable, and that our sample of ilmenite rims is

reasonably representative, it would appear that the ilmenite and sill-
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cate grain populations differ with respect to their relative accumula-

tions of deposited material. At the present time, we can only specu-

late on the reasons for this difference, but they may be linked to

differences in the physical ability of both grain types to retain thick

surface deposits or to the grains' relative lifetimes within the regolith.

Because the number of ilmenite grains we have studied is small, it is

advisable that a much larger number of ilmenite grains be utilized in

future rim studies so as to assess whether our present sample is ac-

tually representative.

FORMATION OF THE INNER RIM LAYER

Role of Thermal Effects

The microstructural features of the precipitate-rich zone that

comprises the inner layer of the ilmenite rims cannot be explained

by depositional processes. This layer is almost certainly the product

of solid-state recrystallization and bulk chemical changes that altered

the outer margin of the original ilmenite grains down to depths of

50-150 nm. Because the inner layer has some of the characteristics

of a reduction rim, we are presented with the possibility that it may

have formed during some thermal event that heated the grain under

the Moon's extremely low pO2 atmosphere. Some ways to heat small

grains in the regolith without melting include: (1) incorporation

into base surge deposits from major impacts (Pearce et al., 1972),

(2) conductive heating by impact melt splatters landing on the soil

surface near the grain, (3) incorporation into agglutinates (Basu and

McKay, 1985), (4) direct shock heating, and (5) diurnal radiant

heating by sunlight (Langseth et al., 1973; Mendell, 1976). In the

first four of these mechanisms, the duration of heating is both short

and variable, and therefore the heating episodes are unlikely to pro-

duce reduced rims with anything like the uniformity in width that

we observe. Heating inside agglutinates also presupposes a mech-

anism by which the grain could be freed from its surrounding glass

with its reaction layer still intact and continuous. Direct shock heat-

ing likewise would seem to be an unlikely way to produce a grain

with an undisrupted, uniformly thin, outer layer.

The last mechanism above is based on measurements which show

that radiant heating raises the top 1-2 cm of the lunar soil to 100-

130 °C for 5-7 d during the lunar daytime (Langseth et al., 1973;

Mendell, 1976). Although such temperatures are relatively low, the

duration of heating integrated over the estimated 5000-150,000 year

surface residence time for small regolith grains (Duraud et aL, 1975;

Borg et al., 1976) could conceivably drive solid-state processes re-

quiring little thermal activation. Whether such a thermal regime could

drive the bulk chemical changes (O and Fe loss) and recrystalliza-

tion needed to form the inner layer cannot be answered definitively.

But the diffusion distances of 50-100 nm needed to transport O and

possibly Fe out of the inner layer generally exceed what would be

expected in 5000-150,000 years for cation and O self-diffusion in

oxides below 150 °C (Freer, 1980).

Additionally, whereas simple heating in the lunar atmosphere

may provide a sufficient driving force for loss of O from the surface

layers of the ilmenite, it is not immediately clear whether loss of Fe

relative to Ti could be accomplished in the same way, since Fe is

much less volatile compared to O. Thus, while mechanisms for sub-

solidus heating and reduction of ilmenite in the regolith can be con-

ceived of, these mechanisms do not fit well with the rims' overall

characteristics. However, a secondarY role for these heating mech-

anisms in forming the inner layer by radiation effects is considered

below.

Formation by Solar Ion Radiation

Damage Mechanisms-Because solid-state amorphization is a

characteristic effect of ion irradiation in crystalline materials, the

amorphous nature of the rims on regolith silicate grains has been

held long as evidence that these rims resulted from radiation-induced

amorphization by solar wind ions (Dran et al., 1970; Bibring et al.,

1972, 1974, 1975; Borg et al., 1980, 1983). The inner layer is not

easily explained by heating effects alone, and solar ion radiation

effects are therefore left as an alternative. Although the layer lacks

the characteristic amorphous nature of ion damaged material, elec-

tron diffraction suggests that the ilmenite within the layer has a

metastable type of cation disorder similar to that observed in other

ion-irradiated oxides (Bordes et al., 1995) and metallic alloys (Luzzi

and Meshii, 1988). This provides initial support for the idea that the

layer is a product of ion radiation effects.

The reason the inner layer is nanocrystalline whereas radiation-

damaged rims on silicates are amorphous can be explained based on

the somewhat supported assumption that ilmenite is more resistant

to radiation-induced amorphization than silicates. Although syste-

matic studies of radiation-induced amorphization in ilmenite have

yet to be made, early ion irradiation studies of lunar minerals did

show preliminary evidence that ilmenite is relatively more radiation

resistant than silicates (Bibring et al., 1974). More recently, experi-

mental irradiation studies using in situ observation techniques have

shown that simpler, higher-symmetry, crystal structures such as

those of olivine and oxide spinels require significantly higher critical

ion doses for amorphization than structurally complex, lower-sym-

metry, silicates (Wang et al., 1991; Wang and Ewing, 1992). The

lower amorphization dose for more complex structures appears to be

linked to the higher probability that target atoms displaced in ion

collisions will end up on the "wrong" site, thereby creating point

defects that destabilize the crystalline structure (Wang and Ewing,

1992).

When compared to pyroxenes and feldspars, the two principal

regolith silicates known to have radiation-amorphized rims, the

crystal structure of ilmenite is indeed significantly simpler, being

based on a slightly distorted hexagonal close-packed anion arrange-

ment with two octahedral sites that are topochemically distinct (Fe

and Ti) but topologically almost identical. Therefore, a proportion-

ate resistance to radiation-induced amorphization is not unexpected

for ilmenite, and the inner layer may have remained crystalline sim-

ply because, at least for the grains we examined, the exposure time

on the topmost soil surface was too short to reach the critical dose

for amorphization.

Although it may have escaped amorphization, the inner layer

can be expected nevertheless to have received solar wind doses on

the order of 0.6 to 18.0 (x 1019 /cm 2) for H + and 0.3 to 8.0 (x

10_8/cm 2) for He ++ based on estimates of the host grain's exposure

time (see Appendix 2). In experimentally irradiated oxides, ion

doses in this range are known to trigger processes of "chemical"

damage that compete with, or replace, atomic-displacement damage

effects (McHargue et al., 1990a). Best known among these chemi-

cal damage effects are valence adjustments associated with the im-

plantation of transition metal ions into insulators. Such implantations

introduce excess positive charge that is compensated by progressive

changes in valence state of the implanted species or the surrounding

target ions. In oxides, this effect has been noted for Fe implanted

into AI203 and MgO, in which the aliovalent implanted ion (Fe) is

progressively reduced with increasing dose until Fe-metal precipi-

tates form (McHargue et al., 1990b; White et al., 1989). For solar-
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wind H + implanted into Fe-bearing minerals, it has been postulated

that charge compensation occurs through Fe reduction, either with

the aid of subsequent O loss in the form of OH- or H20, or by an

isochemical in situ mechanism (Housley et aL, 1973, 1974; Yin et

a/.,1975a, b, 1976). The in situ process would be similar to the im-

plantation-reduction effects observed by White et al. (1989) but

would involve reduction of the Fe and Ti already present in the

ilmenite target. The inability of the ilmenite crystal structure to ac-

commodate these reduced species would trigger solid-state precipi-

tation of the reduced Ti-oxide precipitates along with Fe metal.

However, one problem with a H+-correlated chemical damage

model is that while it provides a thermodynamic driving force for

recrystallizing the implanted grain rims, it is unclear how it can

facilitate, at relatively low lunar temperatures, the kinetics of nucle-

ating and growing the Fe metal and reduced Ti-oxide precipitates.

It is here that diurnal heating may have played a role along with

some promotion of the recrystallization kinetics through radiation-

enhanced diffusion (Cheng et al., 1991; Kim et al., 1987; Davis et

al., 1992) or another radiation-related kinetic process (see below).

Despite some uncertainties, it is our opinion that chemically-derived

radiation damage processes probably provided part of the thermo-

dynamic driving energy for the precipitation reactions within the

inner layer. Other contributions to disequilibrium and recrystalliza-

tion could have come from the inner layer's net loss of Fe relative to

Ti (see below).

Inner Layer Widths Compared to Solar Ion Ranges-If irra-

diation from solar wind ions was responsible for formation of the

inner layer, then with reasonable allowances for surface removal by

sputtering and other factors such as the distribution of ion incidence

angles, the alteration depth of the inner layer should correspond to

either: (1) the projected range or (2) the displacement damage-vs.-

depth relations expected for solar wind ions. To test for this corre-

spondence, we used the simulation program TRIM (TRansport of

Ions in Matter; Ziegler et al., 1985) to calculate solar ion range dis-

tributions and damage vs. depth relations for ilmenite. The TRIM

program uses a Monte Carlo algorithm to calculate, ion stopping and

target atom displacements as a function of depth in multielement

targets based on a binary collision model (Biersack and Haggmark,

1980; Robinson, 1993). For the calculation of ion range distribu-

tions, it has proven to be accurate for a wide range of multielement

targets including oxides.

We performed TRIM calculations of the range distributions and

atom-displacement damage in ilmenite (ideal FeTiO3) for the prin-

cipal solar-wind species H and He using a representative contem-

porary solar wind energy of 1 keV/nucleon (ion isovelocity of 450

kin/s; Gosling et aL, 1976). The calculation is typically run for a large

number of ions hitting a single impact point, ultimately yielding a

range distribution or displacement-damage profile for a single "av-

erage" ion. To simulate the hemispherically-directional (23 steradi-

ans) solar wind plasma, we ran the program using an input file with
random ion directions.

As shown in Fig. 9, the range distribution for a given ion (Fig.

9a) differs significantly from its corresponding displacement damage

curve (Fig. 9b) because the former shows the ion's final stopping

depth, whereas the latter shows where the ion displaced the largest

number of target atoms. The use of hemispherically-directional ions

in the calculation also tends to skew the damage curve to reach a

maximum very close to the target surface. The curves show that for

H + and He ++ ions with roughly the same velocity (e.g., same "energy"
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FIG. 9. Results of TRIM calculations for 1 keV/nucleon solar wind H+ and
He++ in ilmenite (FeTiO3). (a) Projected range distribution curves show
implanted ion concentration (ions/cm 3) as a function of depth per incident
He++ or H+ ion/cm 2. (b) Displacement damage curves showing the number
of target-atom vacancies that a single incoming ion produces every Ang-
strom along its (projected) path. The He++ curve has been scaled by a factor
of 1/22 to reflect He's concentration in the solar wind relative to H and can
be interpreted as describing the number of He-produced vacancies that are
created per incoming H+ ion. The total displacement damage per incident
H + is therefore the sum of both curves.

in units of keV/nucleon), He ++ has both a larger projected range and

a greater damage depth than H ++.

Figure 10 compares the ilmenite rim widths to the TRIM range

results for H + and He ++. The rim widths have been reduced by 20%

to make a rough across-the-board compensation for possible appar-

ent thickness effects (see Appendix I). The horizontal bands sum-

marize the H + and He ++ range data, with the bottom of each band

corresponding to the peak in the projected range distribution and the

top giving the depth at which the distribution falls to zero (see Fig.

9a). This latter depth estimates the maximum thickness of chemi-

cally damaged layer that an ion of a given energy could conceivably

produce, assuming no sputtering and an infinite exposure time. The

actual damaged layer thickness will be a complex function of the

composition and overall speed distribution of the solar wind during

the grain's exposure, as well as the rate at which the grain's surface

recedes due to sputtering (Borg et al., 1983). Such factors are not

accounted for in the present treatment.

Most of the corrected inner layer widths are close to or slightly

larger than the H + maximum range line and are well-bracketed by
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FIG. 10. Inner and outer layer thicknesses data replotted with a 20% downward correc-
tion for apparent thickness and compared to projected range data for 1 keV/nucleon H +
and He++ (horizontal shaded bands). Position of vertical bars has been reversed from
Fig. 3 to facilitate comparison of the inner layer thicknesses with the ion range data.
The bottom of the horizontal bands for H + and He++ corresponds to the depth of the
peak in the projected range distribution curve for each ion; the top gives the depth at
which the distribution falls to zero.

the He ++ range band (Fig. 10). Four 10084 grains show widths that

exceed the He ++ maximum range line, grain no. 2 being particularly

anomalous. As a group, the inner layer widths are somewhat wider

than we would have expected if, as we hypothesized above, their

formation is tied to "chemical" damage effects from implanted H +.

However, only a 100-150 km/s increase in the solar wind speed is

needed for the H + range to bracket most of the inner rim widths, and

such an increase is well within observed solar wind speed variations

(Gosling et al., 1976). The four 10084 grains with wide rims, par-

ticularly nos. 2 and 7, are not as easily reconciled with the range

data, however. Although it is tempting to explain such wide rims by

invoking an especially long exposure time, it must be remembered

that a long exposure can make only an implanted/damaged layer

wider if the flux of ions with the requisite deeper penetration depth

is sufficiently high. In this case, for H + to penetrate to depths of

150 nm would require solar wind velocities of 900-1000 kin/s, and

fluxes in this velocity range in the contemporary solar wind fall to

near zero (Gosling et al., 1976).

In summary, most of the inner rim widths correlate reasonably

well with expected H + and He ++ ion ranges and lend support to a

radiation origin for the inner layer. The few anomalously wide inner

layers are intriguing but unexplained and will have to remain so

until the TRIM output can be incorporated into a more refined quan-

titative model for the time evolution of the depth of radiation dam-

age in lunar ilmenite.

Radiation-Induced Chemical Changes-Having proposed pos-

sible ways that solar ion radiation could have recrystallized the inner

layer without subtracting or adding components other than im-

planted ions, we will consider ways that ion radiation might account

for the inner layer's apparent loss of O and Fe relative to the under-

lying host ilmenite. Various ion radiation effects are known or hy-

pothesized to change the composition of irradiated materials on either

a local (nanometers) or larger (micron) scale (see Betz and Wehner,

1983 for a review). Some of these processes, such as preferential

sputtering, have already been considered in attempts to explain the

surface chemistry of lunar grains (Yin et al., 1976). Others involve

radiation-induced mixing (so-called ion mixing) across a boundary

between two chemically distinct regions or phases (Cheng et al.,

1991), or actual segregation of an originally homogeneous target into

chemically distinct domains or layers (Lam and Leaf, 1986;

Kelly and Sanders, 1976).

To form the inner layer by ion mixing would require

deposition of highly reduced, Ti-rich material on the il-

menite surface, followed by chemical exchange with the

ilmenite driven either "ballistically" by atomic displace-

ments in solar ion collision cascades (Cheng et al., 1991;

Traverse et al., 1989) or by radiation enhancement of nor-

mal thermally-activated diffusion (Cheng et al., 1991;

Davis et al., 1992; Kim et al., 1987). Although feasible

from a mechanistic standpoint, chemical exchange by either

process can only work "downhill" and would require the

deposited surface layer initially to have a much higher

Ti/Fe ratio than the underlying ilmenite (i.e., Ti/Fe >> 1).

Such a composition, however, is opposite to the Fe and Ti

content of deposited surface layers observed on regolith

silicates by Keller and McKay (1994). It does not agree

also with our own compositional profiles for the inner and

outer layers. Therefore, because it relies on an unlikely

composition for the deposited outer layer, we don't con-

sider ion mixing to be a likely explanation for the inner layer's

chemistry.

In contrast to ion-mixing, radiation segregation processes could

produce a chemically differentiated outer layer on an originally

"clean" ilmenite grain without the aid of a deposited surface layer.

To fit the present observations, such processes would need to pro-

duce a chemically altered layer that matches our observed inner

layer widths, a depth on the order of the projected ion range for He ++

(20-80 rim). Such so-called range-correlated chemical changes have

been observed experimentally, but their mechanisms have only been

explained on a case by case basis (see summary in Betz and Weh-

her, 1983). Two of these worth considering here are: (1) mass-

correlated atomic segregation under ion irradiation, with or without

surface removal by isochemical sputtering (MCAS), and (2) prefer-

ential surface sputtering combined with deep chemical exchange by

thermally-activated diffusion or radiation-assisted atomic transport

(PSE). To these we will add (3) in situ reduction with surface se-

gregation of reduced species (ISS), which is an extension of the H +-

correlated chemical damage processes discussed above.

The MCAS (our terminology) process was originally developed

by Kelly and Sanders (1976) and Sigmund (1979) in their discus-

sions of "recoil implantation", which is a special case of ion mixing

where a thin compositionally-contrasting layer on a target surface acts

as a "recoil source" for implantation of an element into an under-

lying layer. The recoil source could be a deposited thin-film or a

chemically-altered surface layer produced from the target itself by

preferential sputtering. An extreme or special case of recoil implan-

tation occurs when the top atomic layers in a multicomponent target

act as the target's own recoil source, and a concentration gradient

develops because lighter elements are implanted farther into the tar-

get than heavier ones (Kelly and Sanders, 1976; Sigmund, 1979).

By adding isochemical sputtering to the process, Sigmund (1979)

suggested that at sufficiently high doses the heavy atom layer would

be sputtered away, leaving the light atom enriched layer imme-

diately below the target surface.

Although MCAS is a reasonable mechanism in metallic alloys,

chemical bonding considerations in oxides supplant simple mass

criteria in determining the displacement energy and recoil distance

of cations and anions Betz and Wehner, 1983). Even ignoring such
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considerations, the MCAS process in ilmenite would form an inner

layer that is O-rich as well as Ti-rich, and our EELS data show

clearly that Ti in the inner layer is reduced rather than oxidized,

something not consistent with the MCAS model.

The PSE process relies on preferential sputtering to remove

selected species, in this case Fe and O, from a thin (1-5 nm deep)

surface layer on the crystal, and on atomic transport to drive deep

chemical exchange between this layer and the target interior. Pre-

ferential sputtering of O is well known to occur in oxide targets

(Kelly and Sanders, 1976; Sekar et al., 1993; Betz and Wehner,

1983), and sputtering of Fe relative to Ti is also reasonable assum-

ing Fe has a weaker surface bonding (Betz and Wehner, 1983).

More problematical in the present context are the atomic transport

mechanisms for extending the composition of the sputtered surface

layer deeper into the crystal. Thermally-activated (Pickering, 1976;

Ho et al., 1976) or radiation-enhanced diffusion (Ho, 1978) are

possibilities, but both would require some degree of benign grain

heating, and as mentioned above there is no clear source for this.

Because of its athermal nature, ballistic ion mixing is an alternative,

but previous studies suggest it can only widen chemically-depleted

surface layers by a few additional tens of nanometers, which is

insufficient to match the width of the inner layer (Kelly and San-

ders, 1976).

The third and final possibility is that a driving force connected

to the surface energetics of the ilmenite, and not to solar radiation

per se, may have promoted atomic transport of in situ reduced Fe

from the H+-implanted region of the inner layer to the grain surface.

Surface segregation is known to occur in both alloys (Betz and

Wehner, 1983; Kelly, 1980) and oxides (Jardine et al., 1987) when

solute atoms migrate from a crystal's interior and collect on its sur-

face. The driving energy for the transport is associated with lower-

ing the crystal's total surface and interfacial free energy. In oxides

surface segregation is known to happen to ion-implanted cationic

species that are not charge-compensated (Jardine et al., 1987). In

our ilmenite grains, it is possible that as in situ reduction proceeded,

the reduced Ti was less subject to surface segregation forces than

metallic-state Fe, because the Ti was held in structurally coherent

precipitates with very low grain boundary energies. On the other

hand, the metallic Fe would be energetically unfavorable inside the

ilmenite, because metal-oxide interfaces have very high energies

and would prefer to migrate to the grain surface and coalesce as

metallic aggregates with lower grain boundary energies. The trans-

port mechanism for the Fe would require still some type of ther-

mally-activated or radiation-enhanced diffusion, but diffusion in a

partially metallic aggregate may have been sufficiently rapid for the

Fe transport to occur at ambient lunar surface temperatures given

enough time. One appeal of the ISS mechanism is that, because its

driving force is independent of ion radiation effects, as long as the

grain stayed within the top few regolith layers affected by radiant

heating, Fe could continue migrating to the grain surface even if the

grain were shielded from the solar wind and production of metallic
Fe by in situ red,uction was halted. This extends the time available

for Fe transport and lessens the demands for an enhanced diffusion

rate. Overall, the ISS mechanism matches well with our indications

that the surface or outer layer on some rims is not only enriched in

metallic Fe but has a higher Fe/Ti ratio than the underlying inner
layer.

CONCLUSIONS

Rims on ilmenite grains from the finest fraction of three lunar

soil samples are composed predominantly of a layer of nanocrystal-

line material produced from the original ilmenite by the chemical

and physical effects of solar ion irradiation. A vapor- or sputter-

deposited layer derived from the bulk lunar soil is present also on

the outermost surface of many rims but is volumetrically subor-

dinate (0-20%) relative to the underlying radiation-derived layer. It

appears that, as a group, ilmenite grains in the lunar regolith are

different from silicates in having a much smaller fraction of rims

that are dominated by vapor- or sputter-deposited material. The

nanocrystalline radiation-altered layer in the rims consists of Ti-

oxides in a matrix of single-crystalline ilmenite and is both reduced

and depleted in Fe relative to the host grain. No single process

easily explains the 50-150 nm depth of chemical alteration in this

layer, but it may be the result of a hybrid process of preferential sur-

face sputtering or in situ reduction combined with diffusive ex-

change, possibly radiation enhanced, between the grain's surface
and interior.
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APPENDIX 1

Measurements of rim widths on grains prepared for TEM by ultra-

microtomy are subject to uncertainty because, depending on the shape of
the grain and how close the section cuts to the grain's center, the rim-grain
interface may bc inclined at varying angles to the plane of the section.

Based solely on geometrical arguments, the projected or apparent width of a
rim can be related to the actual width according to:

R T
W = _ Eq. (1)

sinO tan(?

where W is the apparent width, R is the actual width, T is the section

thickness, and 0 is the inclination angle of the boundary between the rim
and host grain relative to the section plane. The second term in Eq. (I),

which describes the contribution of the projection of the inclined rim-grain
boundary to the apparent width, rapidly becomes large as the inclination
angle decreases. Depending on the section thickness (typically 75-100

nm), this can increase the true width by 3040% for inclination angles much
smaller than 85 ° .

However, the above geometrical description does not take into account

diffraction contrast effects in the TEM that affect how the rim-grain
interface is imaged. For example, when the host grain underlying (or
overlying) the inclined rim is strongly diffracting, a condition that we used

in most of our images, the image of the inclined rim-grain boundary will be
dominated by the underlying/overlying crystal, and the boundary will not

become visible until roughly half of the thickness of the section is made up
of rim material. This lessens the overall contribution of the rim-grain

interface to the apparent width by -50% compared that given in Eq. (1).
Because sections that remain intact during preparation tend to be those that
cut across the center portion of a grain, we estimate the minimum inclina-

tion angle for most sections to be generally >75 °. Accounting for an -50%
correction to the second term in Eq. (1), this converts to a maximum 20-

25% downward correction for most rims widths. For the purpose of making
an average correction to our observed rim widths, we have let 0 = 75 ° and
T = 100, yielding an approximate downward correction of 20%.

APPENDIX 2

Solar wind H + and He ++ doses for the ilmenite grains in this study can
be estimated as follows. The surface residence time ofregolith grains based

on regolith dynamic models such Solmix (Duraud et al., 1975; Borg et al.,
1976) are generally in the range of 5000-150,000 years for grains 1-50 ktm

in diameter. When combined with data for solar wind fluxes and composi-
tions (Bame et al. 1983; Feldman et aL, 1977) and making corrections for

lunar rotation and shielding by the Earth's magnetosphere (Kerridge, 1991),
this converts to a flat-target dose for H+ of between 0.6 to 18.0 (x 1019

/cm2), and forrHe ++ of 0.3 to 8.0 (x 1018/cm2). (Sputtering and accretionary
effects that subtract from or add to grain surfaces will alter these estimates

slightly.) Dose estimates based on the concentration of implanted He
measured for hmar ilmenites are somewhat smaller. Based on Nichols et al.

(1994) reported average He content of 0.2255 cc-STP/g for ilmenite grains
90 150/_m in diameter, one can compute a corresponding flat target dose
for He ++ of 4-7 (x 1016/cm2), and for H + of 8-14 (x 1017/cm 2) based on the

latter's solar wind abundance (Feldman et al., 1977).


